Modeling stochastic Ca2+ release from a cluster of IP3-sensitive receptors.

نویسندگان

  • L Diambra
  • N Guisoni
چکیده

We focused our attention on Ca(2+) release from the endoplasmic reticulum through a cluster of inositol(1,4,5)-trisphosphate (IP(3)) receptor channels. The random opening and closing of these receptors introduce stochastic effects that have been observed experimentally. Here, we present a stochastic version of Othmer-Tang model (OTM) for IP(3) receptor clusters. We address the average behavior of the channels in response to IP(3) stimuli. In our stochastic simulation we found that the fraction of open channels versus [IP(3)] follows a Hill curve, whose associate Hill coefficient increases when intracellular Ca(2+) level increase. This finding suggests that feedback from cytosolic Ca(2+) plays a key role in the channel response to IP(3). We also study several aspects of the stochastic properties of Ca(2+) release and we compare with experimental observations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NAADP mobilizes Ca2+ from a thapsigargin-sensitive store in the nuclear envelope by activating ryanodine receptors

Ca2+ release from the envelope of isolated pancreatic acinar nuclei could be activated by nicotinic acid adenine dinucleotide phosphate (NAADP) as well as by inositol 1,4,5-trisphosphate (IP3) and cyclic ADP-ribose (cADPR). Each of these agents reduced the Ca2+ concentration inside the nuclear envelope, and this was associated with a transient rise in the nucleoplasmic Ca2+ concentration. NAADP...

متن کامل

Rapid Recycling of Ca2+ between IP3-Sensitive Stores and Lysosomes

Inositol 1,4,5-trisphosphate (IP3) evokes release of Ca2+ from the endoplasmic reticulum (ER), but the resulting Ca2+ signals are shaped by interactions with additional intracellular organelles. Bafilomycin A1, which prevents lysosomal Ca2+ uptake by inhibiting H+ pumping into lysosomes, increased the amplitude of the initial Ca2+ signals evoked by carbachol in human embryonic kidney (HEK) cell...

متن کامل

Ca2+ released via IP3 receptors is required for furrow deepening during cytokinesis in zebrafish embryos.

We have previously visualized three Ca2+ transients, generated by release from intracellular stores, which are associated with cytokinesis during the early cell division cycles of zebrafish embryos: the furrow positioning, propagation and deepening transients. Here we demonstrate the requirement of the latter for furrow deepening, and identify the Ca2+ release channels responsible for generatin...

متن کامل

Nicotinic acid adenine dinucleotide phosphate triggers Ca2+ release from brain microsomes

Mobilization of Ca2+ from intracellular stores is an important mechanism for generating cytoplasmic Ca2+ signals [1]. Two families of intracellular Ca(2+)-release channels - the inositol-1,4, 5-trisphosphate (IP3) receptors and the ryanodine receptors (RyRs) - have been described in mammalian tissues [2]. Recently, nicotinic acid adenine dinucleotide phosphate (NAADP), a molecule derived from N...

متن کامل

Calcium release in HSY cells conforms to a steady-state mechanism involving regulation of the inositol 1,4,5-trisphosphate receptor Ca2+ channel by luminal [Ca2+]

In many cell types, low concentrations of inositol 1,4,5-trisphosphate (IP3) release only a portion of the intracellular IP3-sensitive Ca2+ store, a phenomenon known as "quantal" Ca2+ release. It has been suggested that this effect is a result of reduced activity of the IP3-dependent Ca2+ channel with decreasing calcium concentration within the IP3-sensitive store ([Ca2+]s). To test this hypoth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell calcium

دوره 37 4  شماره 

صفحات  -

تاریخ انتشار 2005